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Common software infrastructure for 
nonlinear PDE solvers

User codes to the problem they 
are solving, not the algorithm 
used to solve the problem
Implementation of various 
algorithms reuse common 
concepts and code when 
possible, without losing 
efficiency 
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Encompassing …
Newton’s method

Direct solvers
Matrix-based preconditioned solvers
Matrix-free methods
Multigrid linear solvers (Newton-MG)

Matrix-based and matrix-free

Nonlinear multigrid
aka Full approximation scheme (FAS) 
aka MG-Newton
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Software engineering ingredients

Standard solver interfaces (SIDL)
Solver libraries (obviously ☺)
Automatic differentiation (AD)
Code generation
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Equilibrium:

Model equations: (Porcelli et al., 1993, 1999)
Testbed: 2D Hall MHD sawtooth instability
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Hall Discretization 
(provided by K. Germaschewski, CMRS)

typedef struct {
double phi,psi,U,F;

} Field;

Function(DALocalInfo *info,Field **x,Field **f,…)
…..

/* Compute over the local points */
for (j=info->ys; j<info->ys+info->ym; j++) {

for (i=info->xs; i<info->xs+info->xm; i++) {
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Hall Discretization (cont.)

/* Lap(phi) - U */
f[j][i].phi = (Lapl(x,phi,i,j) - x[j][i].U) * hxhy;

/* psi - d_e^2 * Lap(psi) - F */
f[j][i].psi = (x[j][i].psi - de2 * Lapl(x,psi,i,j) - x[j][i].F) *
hxhy;

/* vx * U_x + vy * U_y - (B_x * F_x + B_y * F_y) / d_e …. 
*/
f[j][i].U  = ((vxp * (D_xm(x,U,i,j)) + vxm * (D_xp(x,U,i,j)) +

vyp * (D_ym(x,U,i,j)) + vym * (D_yp(x,U,i,j))) -
(Bxp * (D_xm(x,F,i,j) + F_eq_x) + Bxm * ….

….
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Algorithm review

F(u) = 0, Jacobian A(u)
Newton  

Newton – SOR (1 inner sweep)

SOR-Newton (1 inner sweep)
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Cute observation
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⇒ Matrix-free linear relaxation 
(Gauss-Seidel) 

is almost identical to nonlinear relaxation
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Function and Jacobian evaluation

FAS requires pointwise
Newton desires global
Newton-MG desires both
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Automatic Differentiation

Given code for              can compute
A(u) and
A(u)*w efficiently

Given code for              can compute
and

efficiently
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Code generation (in-lining ☺)

• Inside the small dimensional Newton 
methods is a user-provided function 
and (AD) Jacobian 

• Big performance hit if handled directly 
with components
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Coarse grid correction is not an issue ☺

Newton-MG

MG-Newton
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Conclusion

The algorithmic/mathematical building 
blocks for Newton-MG and MG-Newton 
are essentially the same
Thus the software building blocks should 
be also (and they will be ☺).


